Carbon Dioxide Reforming of Methane to Syngas: Modeling Using Response Surface Methodology and Artificial Neural Network

  • Saidina Amin N
  • Mohd. Yusof K
  • Isha R
N/ACitations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Kesan oksigen terhadap mangkin 1% berat Rhodium di dalam Magnesium Oksida (MgO) dikaji untuk proses pembentukan semula metana dengan menggunakan gas karbon dioksida (CORM). Kesan tiga parameter utama: suhu, nisbah reaktan (O2/CH4) dan berat mangkin terhadap penukaran metana, kememilihan gas sintesis dan nisbah H2/CO diselidiki. Dengan bantuan reka bentuk eksperimen, dua pendekatan matematik: polinomial empirik dan rangkaian saraf buatan diterbitkan. Pekali kolerasi model polinomial empirik yang diterbitkan, r, adalah melebihi 85%. Walau bagaimanapun, pekali kolerasi untuk suapan hadapan rangkaian saraf pula melebihi 95%. Oleh itu, suapan hadapan rangkaian saraf adalah lebih efisen daripada model polinomial empirik. Penukaran metana tertinggi sebanyak 95% dihasilkan pada suhu 850°C dengan nisbah O2/CH4 sebanyak 0.14 dan 141 mg mangkin. Kememilihan hidrogen secara maksima sebanyak 40% boleh dicapai pada suhu 909°C, nisbah O2/CH4 sebanyak 0.23 dan 309 mg mangkin. Nisbah maksima H2/CO sebanyak 1.6 dihasilkan pada suhu 758°C dengan nisbah O2/CH4 sebanyak 0.19 dan 360 mg mangkin digunakan. Kata kunci: Gas sintesis, pembentukan semula metana menggunakan gas karbon dioksida, rhodium, MgO, reka bentuk eksperimen, suapan hadapan rangkaian saraf 1wt% of Rhodium (Rh) on Magnesium Oxide (MgO) catalyst have been investigated for carbon dioxide reforming of methane (CORM) with the effect of oxygen. The effect of temperature, O2/CH4 ratio and catalyst weight on the methane conversion, synthesis gas selectivity and H2/CO ratio were studied. With the help of experimental design, two mathematical approaches: empirical polynomial and artificial neural network were developed. Empirical polynomial models correlation coefficient, r, was above 85%. However, the feed forward neural network correlation coefficient was more than 95%. The feed forward neural network modeling approach was found to be more efficient than the empirical model approach. The condition for maximum methane conversion was obtained at 850°C with O2/ CH4 ratio of 0.14 and 141 mg of catalyst resulting in 95% methane conversion. A maximum of 40% hydrogen selectivity was achieved at 909°C, 0.23 of O2/CH4 ratio and 309 mg catalyst. The maximum H2/CO ratio of 1.6 was attained at 758°C, 0.19 of O2/CH4 and 360 mg catalyst. Key words: Synthesis gas, carbon dioxide reforming of methane, rhodium, MgO, experimental design, feed forward neural network

Cite

CITATION STYLE

APA

Saidina Amin, N. A., Mohd. Yusof, K., & Isha, R. (2012). Carbon Dioxide Reforming of Methane to Syngas: Modeling Using Response Surface Methodology and Artificial Neural Network. Jurnal Teknologi. https://doi.org/10.11113/jt.v43.784

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free