Prevention and overcoming castration resistance of prostate cancer (PC) remains one of the main unsolved problems in modern oncology. Hence, many studies are focused on the investigation of novel androgen receptor (AR) regulators that could serve as potential drug targets in disease therapy. Among such factors, inhibitor of growth (ING) proteins were identified. Some ING proteins act as AR transcriptional coregulators, indicating their relevance for PC research. The ING family consists of five protein‐coding genes from ING1 to ING5 and pseudogene INGX. The ING genes were revealed through their sequence homology to the first identified ING1 from an in vivo screen. ING factors are a part of histone modification complexes. With the help of the conserved plant homeodomain (PHD) motif, ING factors bind to Histone 3 Lysine 4 (H3K4) methylation mark with a stronger affinity to the highest methylation grade H3K4me3 and recruit histone acetyltransferases (HAT) and histone deacetylases (HDAC) to chromatin. ING1 and ING2 are core subunits of mSIN3a‐HDAC corepressor complexes, whereas ING3–5 interact with different HAT complexes that serve as coactivators. ING members belong to type II tumour suppressors and are frequently downregulated in many types of malignancies, including PC. As the family name indicates, ING proteins are able to inhibit cell growth and tumour development via regulation of cell cycle and cancer‐relevant pathways such as apoptosis, cellular senescence, DNA repair, cell migration, invasion, and angiogenesis. Many ING splice variants that enhance the diversity of ING activity were discovered. However, it seems that the existence of multiple ING splice variants is underestimated, since alternative splice variants, such as the AR coregulators ING1 and ING3, counteract full‐length ING and thus play an opposite functional role. These results open a novel prospective investigation direction in understanding ING factors biology in PC and other malignancies.
CITATION STYLE
Melekhova, A., & Baniahmad, A. (2021, October 1). Ing tumour suppressors and ing splice variants as coregulators of the androgen receptor signalling in prostate cancer. Cells. MDPI. https://doi.org/10.3390/cells10102599
Mendeley helps you to discover research relevant for your work.