Numerical results on the hodgkin-huxley neural network: Spikes annihilation

0Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

One of various families of Neural Networks (NN) that have been used in the study and development of the field of Artificial Intelligence (AI) is the Hodgkin-Huxley (HH) Network. In addition to the computational properties of the HH neuron, it also can be used to reasonably model biological phenomena, and in particular, in modeling neurons which are "synchronized/ desynchronized". The HH Neuron is a nonlinear system with two equilibrium states: A fixed point and a limit cycle. Both of them co-exist and are stable. By using a perturbation method, the behavior of this neuron can be switched between these two equilibria, namely spiking and resting respectively. The process of changing from spiking to resting is referred to as Spike Annihilation. In this paper, we numerically prove the existence of a brief excitation (input) which, when delivered to the HH neuron during its repetitively firing state, annihilates its spikes. We also derive the characteristics of this brief excitation. © 2007 Springer-Verlag Berlin Heidelberg.

Cite

CITATION STYLE

APA

Calitoiu, D., Oommen, J. B., & Nussbaum, D. (2007). Numerical results on the hodgkin-huxley neural network: Spikes annihilation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 4729 LNCS, pp. 378–387). https://doi.org/10.1007/978-3-540-75555-5_36

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free