Prediction of long-term stroke recurrence using machine learning models

43Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

Abstract

Background: The long-term risk of recurrent ischemic stroke, estimated to be between 17% and 30%, cannot be reliably assessed at an individual level. Our goal was to study whether machine-learning can be trained to predict stroke recurrence and identify key clinical variables and assess whether performance metrics can be optimized. Methods: We used patient-level data from electronic health records, six interpretable algorithms (Logistic Regression, Extreme Gradient Boosting, Gradient Boosting Machine, Random Forest, Support Vector Machine, Decision Tree), four feature selection strategies, five prediction windows, and two sampling strategies to develop 288 models for up to 5-year stroke recurrence prediction. We further identified important clinical features and different optimization strategies. Results: We included 2091 ischemic stroke patients. Model area under the receiver operating characteristic (AUROC) curve was stable for prediction windows of 1, 2, 3, 4, and 5 years, with the highest score for the 1-year (0.79) and the lowest score for the 5-year prediction window (0.69). A total of 21 (7%) models reached an AUROC above 0.73 while 110 (38%) models reached an AUROC greater than 0.7. Among the 53 features analyzed, age, body mass index, and laboratory-based features (such as high-density lipoprotein, hemoglobin A1c, and creatinine) had the highest overall importance scores. The balance between specificity and sensitivity improved through sampling strategies. Conclusion: All of the selected six algorithms could be trained to predict the long-term stroke recurrence and laboratory-based variables were highly associated with stroke recurrence. The latter could be targeted for personalized interventions. Model performance metrics could be optimized, and models can be implemented in the same healthcare system as intelligent decision support for targeted intervention.

Cite

CITATION STYLE

APA

Abedi, V., Avula, V., Chaudhary, D., Shahjouei, S., Khan, A., Griessenauer, C. J., … Zand, R. (2021). Prediction of long-term stroke recurrence using machine learning models. Journal of Clinical Medicine, 10(6), 1–16. https://doi.org/10.3390/jcm10061286

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free