Construction and validation of a machine learning-based nomogram: A tool to predict the risk of getting severe coronavirus disease 2019 (COVID-19)

14Citations
Citations of this article
65Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Identifying patients who may develop severe coronavirus disease 2019 (COVID-19) will facilitate personalized treatment and optimize the distribution of medical resources. Methods: In this study, 590 COVID-19 patients during hospitalization were enrolled (Training set: n = 285; Internal validation set: n = 127; Prospective set: n = 178). After filtered by two machine learning methods in the training set, 5 out of 31 clinical features were selected into the model building to predict the risk of developing severe COVID-19 disease. Multivariate logistic regression was applied to build the prediction nomogram and validated in two different sets. Receiver operating characteristic (ROC) analysis and decision curve analysis (DCA) were used to evaluate its performance. Results: From 31 potential predictors in the training set, 5 independent predictive factors were identified and included in the risk score: C-reactive protein (CRP), lactate dehydrogenase (LDH), Age, Charlson/Deyo comorbidity score (CDCS), and erythrocyte sedimentation rate (ESR). Subsequently, we generated the nomogram based on the above features for predicting severe COVID-19. In the training cohort, the area under curves (AUCs) were 0.822 (95% CI, 0.765–0.875) and the internal validation cohort was 0.762 (95% CI, 0.768–0.844). Further, we validated it in a prospective cohort with the AUCs of 0.705 (95% CI, 0.627–0.778). The internally bootstrapped calibration curve showed favorable consistency between prediction by nomogram and the actual situation. And DCA analysis also conferred high clinical net benefit. Conclusion: In this study, our predicting model based on five clinical characteristics of COVID-19 patients will enable clinicians to predict the potential risk of developing critical illness and thus optimize medical management.

Cite

CITATION STYLE

APA

Yao, Z., Zheng, X., Zheng, Z., Wu, K., & Zheng, J. (2021). Construction and validation of a machine learning-based nomogram: A tool to predict the risk of getting severe coronavirus disease 2019 (COVID-19). Immunity, Inflammation and Disease, 9(2), 595–607. https://doi.org/10.1002/iid3.421

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free