Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall

147Citations
Citations of this article
147Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We tested two hypotheses for the mechanism by which xyloglucan-pectin covalent bonds are formed in Arabidopsis cell cultures. Hypothesis 1 proposed hetero-transglycosylation, with xyloglucan as donor substrate and a rhamnogalacturonan-I (RG-I) side-chain as acceptor. We looked for enzyme activities that catalyse this reaction using α-(1→5)-l-[ 3H]arabino- or β-(1→4)-d-[3H]galacto- oligosaccharides as model acceptor substrates. The 3H- oligosaccharides were supplied (with or without added xyloglucans) to living Arabidopsis cell-cultures, permeabilised cells, cell-free extracts, or four authentic XTHs. No hetero-transglycosylation occurred. Therefore, we cannot support hypothesis 1. Hypothesis 2 proposed that some xyloglucan is manufactured de novo as a side-chain on RG-I. To test this, we pulse-labelled Arabidopsis cell-cultures with [3H]arabinose and monitored the radiolabelling of anionic (pectin-bonded) xyloglucan, which was resolved from free xyloglucan by ion-exchange chromatography. [3H]Xyloglucan-pectin complexes were detectable <4 min after [3H]arabinose feeding, which is shorter than the transit-time for polysaccharide secretion, indicating that xyloglucan-pectin bonds were formed intra-protoplasmically. Thereafter, the proportion of the wall-bound [3H]xyloglucan that was anionic remained almost constant at ∼50% for ≥6 days, showing that the xyloglucan-pectin bond was stable in vivo. Some [3H]xyloglucan was rapidly sloughed into the medium instead of becoming wall-bound. Only ∼30% of the sloughed [3H]xyloglucan was anionic, indicating that bonding to pectin promoted the integration of xyloglucan into the wall. We conclude that ∼50% of xyloglucan in cultured Arabidopsis cells is synthesised on a pectic primer, then secreted into the apoplast, where the xyloglucan-pectin bonds are stable and the pectic moiety aids wall-assembly. © 2007 Springer-Verlag.

Cite

CITATION STYLE

APA

Popper, Z. A., & Fry, S. C. (2008). Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. Planta, 227(4), 781–794. https://doi.org/10.1007/s00425-007-0656-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free