A molecular computational model improves the preoperative diagnosis of thyroid nodules

18Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Thyroid nodules with indeterminate cytological features on fine needle aspiration (FNA) cytology have a 20% risk of thyroid cancer. The aim of the current study was to determine the diagnostic utility of an 8-gene assay to distinguish benign from malignant thyroid neoplasm.Methods: The mRNA expression level of 9 genes (KIT, SYNGR2, C21orf4, Hs.296031, DDI2, CDH1, LSM7, TC1, NATH) was analysed by quantitative PCR (q-PCR) in 93 FNA cytological samples. To evaluate the diagnostic utility of all the genes analysed, we assessed the area under the curve (AUC) for each gene individually and in combination. BRAF exon 15 status was determined by pyrosequencing. An 8-gene computational model (Neural Network Bayesian Classifier) was built and a multiple-variable analysis was then performed to assess the correlation between the markers.Results: The AUC for each significant marker ranged between 0.625 and 0.900, thus all the significant markers, alone and in combination, can be used to distinguish between malignant and benign FNA samples. The classifier made up of KIT, CDH1, LSM7, C21orf4, DDI2, TC1, Hs.296031 and BRAF had a predictive power of 88.8%. It proved to be useful for risk stratification of the most critical cytological group of the indeterminate lesions for which there is the greatest need of accurate diagnostic markers.Conclusion: The genetic classification obtained with this model is highly accurate at differentiating malignant from benign thyroid lesions and might be a useful adjunct in the preoperative management of patients with thyroid nodules. © 2012 Tomei et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Tomei, S., Marchetti, I., Zavaglia, K., Lessi, F., Apollo, A., Aretini, P., … Mazzanti, C. (2012). A molecular computational model improves the preoperative diagnosis of thyroid nodules. BMC Cancer, 12. https://doi.org/10.1186/1471-2407-12-396

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free