Molecular cloning, sequencing and phylogeny of vasotocin receptor genes in the air-breathing catfish Heteropneustes fossilis with sex dimorphic and seasonal variations in tissue expression

16Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Vasotocin (VT) is the ortholog of vasopressin (VP) in non-mammalian vertebrates and is known for multiple functions. Teleost fishes have a complete repertoire of known VP/VT receptor subtypes (vasopressin type, VR): two V1A subtypes (V1Aa and V1Ab or V1a1 and V1a2) and five V2 subtypes (V2A1, V1A2, V2B1, V2B2 and V2C). Full-length cDNAs of v1a1, v1a2 and v2 (v2a1) with ORFs of 1,308, 1,137 and 1,527 bp, respectively, were cloned and characterized in the catfish Heteropneustes fossilis (Siluriformes, Ostariophysi). BLAST analysis revealed that the genes encoded three VT receptors, V1a1, V1a2 and V2 of 436, 379 and 509 amino acid residues, respectively. The predicted proteins showed typical features of the seven-transmembrane domain receptor core structure with hallmark triplets Asp-Arg-Tyr/Asp-Arg-His (DRY/DRH) and the variable intracellular loop III of vertebrate neurohypophysial hormone receptors. Phylogenetic analysis of the deduced protein sequences revealed that they clustered with the V1Aa, V1Ab and V2A1, respectively, of other teleosts. The V2R has a sequence identity of 70–76 % with V2A1 than with the V2B type (sequence identity 43–49 %). Semiquantitative PCR analysis showed that the receptor gene transcripts were expressed ubiquitously in the tissues examined (brain, pituitary, gonads, liver, muscle, kidney and gills) and displayed sex and seasonal fluctuations in a tissue-specific manner. The results form a basis for functional studies on the VT receptors in the catfish.

Cite

CITATION STYLE

APA

Rawat, A., Chaube, R., & Joy, K. P. (2015). Molecular cloning, sequencing and phylogeny of vasotocin receptor genes in the air-breathing catfish Heteropneustes fossilis with sex dimorphic and seasonal variations in tissue expression. Fish Physiology and Biochemistry, 41(2), 509–532. https://doi.org/10.1007/s10695-015-0026-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free