The cut gene of Drosophila melanogaster is an identity selector gene that establishes the program of development and differentiation of external sense organs. Mutations in the cut gene cause a transformation of the external sense organs into chordotonal organs, originally assessed by the use of immunostaining methods [Bodmer et al. (1987): Cell, 51:293-307]. Because of evidence that axonal projections of the transformed neurons within the central nervous system are not completely switched in cut mutants, the transformation of the four cells making up a sense organ was reassessed using single-cell staining with fluorescent dye and differential interface contrast (DIC) microscopy of the embryo and larva. The results provide strong evidence that all cells of the sense organs are completely transformed, exhibiting the morphologies and organelles characteristic of chordotonal sense organs. A comparison of the structures of external sense organs and chordotonal organs indicates that a number of the differences could be due to the degree of development of common structures, and that cut or downstream genes modulate effector genes that are normally utilized in both receptor types. The possible derivation of insect chordotonal and external sense organs from a receptor type found in crustaceans is discussed in the light of arthropod phylogenetics and the molecular genetics of sense organ development.
CITATION STYLE
Merritt, D. J. (1997). Transformation of external sensilla to chordotonal sensilla in the cut mutant of Drosophila assessed by single-cell marking in the embryo and larva. Microscopy Research and Technique, 39(6), 492–505. https://doi.org/10.1002/(SICI)1097-0029(19971215)39:6<492::AID-JEMT4>3.0.CO;2-G
Mendeley helps you to discover research relevant for your work.