Climate change effects on macrofaunal litter decomposition: The interplay of temperature, body masses and stoichiometry

60Citations
Citations of this article
170Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Macrofauna invertebrates of forest floors provide important functions in the decomposition process of soil organic matter, which is affected by the nutrient stoichiometry of the leaf litter. Climate change effects on forest ecosystems include warming and decreasing litter quality (e.g. higher C: nutrient ratios) induced by higher atmospheric CO2 concentrations. While litter-bag experiments unravelled separate effects, a mechanistic understanding of how interactions between temperature and litter stoichiometry are driving decomposition rates is lacking. In a laboratory experiment, we filled this void by quantifying decomposer consumption rates analogous to predator-prey functional responses that include the mechanistic parameters handling time and attack rate. Systematically, we varied the body masses of isopods, the environmental temperature and the resource between poor (hornbeam) and good quality (ash). We found that attack rates increased and handling times decreased (i) with body masses and (ii) temperature. Interestingly, these relationships interacted with litter quality: small isopods possibly avoided the poorer resource, whereas large isopods exhibited increased, compensatory feeding of the poorer resource, which may be explained by their higher metabolic demands. The combination of metabolic theory and ecological stoichiometry provided critically important mechanistic insights into how warming and varying litter quality may modify macrofaunal decomposition rates. © 2012 The Royal Society.

Cite

CITATION STYLE

APA

Ott, D., Rall, B. C., & Brose, U. (2012). Climate change effects on macrofaunal litter decomposition: The interplay of temperature, body masses and stoichiometry. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1605), 3025–3032. https://doi.org/10.1098/rstb.2012.0240

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free