Mdcan-lys: A model for predicting succinylation sites based on multilane dense convolutional attention network

12Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Lysine succinylation is an important post-translational modification, whose abnormalities are closely related to the occurrence and development of many diseases. Therefore, exploring effective methods to identify succinylation sites is helpful for disease treatment and research of related drugs. However, most existing computational methods for the prediction of succinylation sites are still based on machine learning. With the increasing volume of data and complexity of feature rep-resentations, it is necessary to explore effective deep learning methods to recognize succinylation sites. In this paper, we propose a multilane dense convolutional attention network, MDCAN-Lys. MDCAN-Lys extracts sequence information, physicochemical properties of amino acids, and structural properties of proteins using a three-way network, and it constructs feature space. For each sub-network, MDCAN-Lys uses the cascading model of dense convolutional block and convolutional block attention module to capture feature information at different levels and improve the abstrac-tion ability of the network. The experimental results of 10-fold cross-validation and independent testing show that MDCAN-Lys can recognize more succinylation sites, which is consistent with the conclusion of the case study. Thus, it is worthwhile to explore deep learning-based methods for the recognition of succinylation sites.

Cite

CITATION STYLE

APA

Wang, H., Zhao, H., Yan, Z., Zhao, J., & Han, J. (2021). Mdcan-lys: A model for predicting succinylation sites based on multilane dense convolutional attention network. Biomolecules, 11(6). https://doi.org/10.3390/biom11060872

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free