Evaluation of carbon nanotube incorporation in cementitious composite materials

23Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

Over the last decades, new materials with outstanding performance have been introduced in the construction industry. Considering these new technologies, it is worth mentioning that nanotechnology has revolutionized various areas of engineering. In the area of civil engineering and construction, cement is used for various purposes and the search to improve its performance has been receiving growing interest within the scientific community. The objective of this research was to evaluate the behavior of cement mortar produced by the addition of multi-walled carbon nanotubes (MWCNTs) in different concentrations by comparing their physical and mechanical properties with the properties of the nanotube-free composite. Motivated by the lack of consensus in the literature concerning to the optimal dosage of CNTs in cementitious matrices, three different carbon nanotube ratios, 0.20, 0.40 and 0.60 wt % Portland cement, were investigated with the aim of evaluating the mechanical properties. Destructive tests were carried out to determine the compressive strength, flexural strength and split tensile strength. Additionally, a non-destructive test was performed to determine the dynamic elastic modulus and density. Scanning electron microscopy (SEM) images showed the interaction between the MWCNTs and the hydration products of Portland cement mortar. The results indicated the potential contribution of 0.40 wt % cement CNTs to the enhancement of the mechanical properties of the cement composite as a promising construction material.

Cite

CITATION STYLE

APA

Evangelista, A. C. J., de Morais, J. F., Tam, V., Soomro, M., Di Gregorio, L. T., & Haddad, A. N. (2019). Evaluation of carbon nanotube incorporation in cementitious composite materials. Materials, 12(9). https://doi.org/10.3390/ma12091504

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free