High-resolution, multiwavelength and time-domain observations of the Galactic Centre black hole candidate, Sgr A*, allow for a direct test of contemporary accretion theory. Most models assume alignment between the accretion disc and black hole angular momentum axes, but this is not necessarily the case for geometrically thick accretion flows like that on to Sgr A*. Instead, we calculate images and spectra from a set of numerical simulations of accretion flows misaligned ('tilted') by 15° from the black hole spin axis and compare them with millimetre (mm) to near-infrared (NIR) observations. Non-axisymmetric standing shocks from eccentric fluid orbits dominate the emission, leading to a wide range of possible image morphologies. The strong effects of disc tilt lead to poorly constrained model parameters. These results suggest that previous parameter estimates from fitting aligned models, including estimates of the dimensionless black hole spin, likely only apply for small values of spin or tilt (upper limits of a < 0.3 or β < 15°). At 1.3 mm, the black hole images have crescent morphologies as in the aligned case, and the black hole shadow may still be accessible to future very long baseline interferometry (mm-VLBI) observations. Shock heating leads to multiple populations of electrons, some at high energies (Te > 1012 K). These electrons can naturally produce the observed NIR flux, spectral index and rapid variability ('flaring'). This NIR emission is uncorrelated with that in the mm, which also agrees with observations. These are the first numerical models to explain the time-variable mm to NIR emission of Sgr A*. Predictions of the model include significant structural changes observable with mm- VLBI on both the dynamical (hour) and Lense-Thirring precession (day-year) time-scales, and ≃30-50 μas changes in centroid position from extreme gravitational lensing events during NIR flares, detectable with the future VLT instrument GRAVITY.We further predict that multiwavelength monitoring should find no significant correlations between mm and NIR/X-ray light curves. The weak correlations reported to date are shown to be consistent with our model, where they are artefacts of the short light-curve durations. If the observed NIR emission is caused by shock heating in a tilted accretion disc, then this would require the Galactic Centre black hole to have a positive, non-zero spin parameter (a > 0) and may rule out a magnetically arrested state. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
CITATION STYLE
Dexter, J., & Chris Fragile, P. (2013). Tilted black hole accretion disc models of Sagittarius A*: Time-variable millimetre to near-infrared emission. Monthly Notices of the Royal Astronomical Society, 432(3), 2252–2272. https://doi.org/10.1093/mnras/stt583
Mendeley helps you to discover research relevant for your work.