CCR2 signaling contributes to ischemia-reperfusion injury in kidney

216Citations
Citations of this article
78Readers
Mendeley users who have this article in their library.

Abstract

Examined were CCR2-deficient mice to clarify the contribution of macrophages via monocyte chemoattractant protein 1 (MCP-1 or CCL2)/CCR2 signaling to the pathogenesis of renal ischemia-reperfusion injury. Also evaluated was the therapeutic effects via the inhibition of MCP-1/CCR2 signaling with propagermanium (3-oxygermylpropionic acid polymer) and RS-504393. Renal artery and vein of the left kidney were occluded with a vascular clamp for 60 min. A large number of infiltrated cells and marked acute tubular necrosis in outer medulla after renal ischemia-reperfusion injury was observed. Ischemia-reperfusion induced the expression of MCP-1 mRNA and protein in injured kidneys, followed by CCR2-positive macrophages in interstitium in wild-type mice. The expression of MCP-1 was decreased in CCR2-deficient mice compared with wild-type mice. The number of interstitial infiltrated macrophages was markedly smaller in the CCR2-deficient mice after ischemia-reperfusion. CCR2-deficient mice decreased the number of interstitial inducible nitric oxide synthase-positive cells after ischemia-reperfusion. The area of tubular necrosis in CCR2-deficient mice was significantly lower than that of wild-type mice after ischemia-reperfusion. In addition, CCR2-deficient mice diminished KC, macrophage inflammatory protein 2, epithelial cell-derived neutrophil-activating peptide 78, and neutrophil-activating peptide 2 expression compared with wild-type mice accompanied with the reduction of interstitial granulocyte infiltration. Similarly, propagermanium and RS-504393 reduced the number of interstitial infiltrated cells and tubular necrosis up to 96 h after ischemia-reperfusion injury. These results revealed that MCP-1 via CCR2 signaling plays a key role in the pathogenesis of renal ischemia-reperfusion injury through infiltration and activation of macrophages, and it offers a therapeutic target for ischemia-reperfusion.

Cite

CITATION STYLE

APA

Furuichi, K., Wada, T., Iwata, Y., Kitagawa, K., Kobayashi, K. I., Hashimoto, H., … Yokoyama, H. (2003). CCR2 signaling contributes to ischemia-reperfusion injury in kidney. Journal of the American Society of Nephrology, 14(10), 2503–2515. https://doi.org/10.1097/01.ASN.0000089563.63641.A8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free