The linear canonical transformation: Definition and properties

10Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this chapter we introduce the class of linear canonical transformations, which includes as particular cases the Fourier transformation (and its generalization: the fractional Fourier transformation), the Fresnel transformation, and magnifier, rotation and shearing operations. The basic properties of these transformations— such as cascadability, scaling, shift, phase modulation, coordinate multiplication and differentiation—are considered. We demonstrate that any linear canonical transformation is associated with affine transformations in phase space, defined by time-frequency or position-momentum coordinates. The affine transformation is described by a symplectic matrix, which defines the parameters of the transformation kernel. This alternative matrix description of linear canonical transformations is widely used along the chapter and allows simplifying the classification of such transformations, their eigenfunction identification, the interpretation of the related Wigner distribution and ambiguity function transformations, among many other tasks. Special attention is paid to the consideration of one- and two-dimensional linear canonical transformations, which are more often used in signal processing, optics and mechanics. Analytic expressions for the transforms of some selected functions are provided.

Cite

CITATION STYLE

APA

Bastiaans, M. J., & Alieva, T. (2016). The linear canonical transformation: Definition and properties. In Springer Series in Optical Sciences (Vol. 198, pp. 29–80). Springer Verlag. https://doi.org/10.1007/978-1-4939-3028-9_2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free