Interlaboratory Study on Zebrafish in Toxicology: Systematic Evaluation of the Application of Zebrafish in Toxicology’s (SEAZIT’s) Evaluation of Developmental Toxicity

1Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Embryonic zebrafish represent a useful test system to screen substances for their ability to perturb development. The exposure scenarios, endpoints captured, and data analysis vary among the laboratories who conduct screening. A lack of harmonization impedes the comparison of the substance potency and toxicity outcomes across laboratories and may hinder the broader adoption of this model for regulatory use. The Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT) initiative was developed to investigate the sources of variability in toxicity testing. This initiative involved an interlaboratory study to determine whether experimental parameters altered the developmental toxicity of a set of 42 substances (3 tested in duplicate) in three diverse laboratories. An initial dose-range-finding study using in-house protocols was followed by a definitive study using four experimental conditions: chorion-on and chorion-off using both static and static renewal exposures. We observed reasonable agreement across the three laboratories as 33 of 42 test substances (78.6%) had the same activity call. However, the differences in potency seen using variable in-house protocols emphasizes the importance of harmonization of the exposure variables under evaluation in the second phase of this study. The outcome of the Def will facilitate future practical discussions on harmonization within the zebrafish research community.

Cite

CITATION STYLE

APA

Hamm, J. T., Hsieh, J. H., Roberts, G. K., Collins, B., Gorospe, J., Sparrow, B., … Ryan, K. R. (2024). Interlaboratory Study on Zebrafish in Toxicology: Systematic Evaluation of the Application of Zebrafish in Toxicology’s (SEAZIT’s) Evaluation of Developmental Toxicity. Toxics, 12(1). https://doi.org/10.3390/toxics12010093

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free