Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback

37Citations
Citations of this article
91Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Restoring sensory feedback in myoelectric prostheses is still an open challenge. Closing the loop might lead to a more effective utilization and better integration of these systems into the body scheme of the user. Electrotactile stimulation can be employed to transmit the feedback information to the user, but it represents a strong interference to the recording of the myoelectric signals that are used for control. Time-division multiplexing (TDM) can be applied to avoid this interference by performing the stimulation and recording in dedicated, non-overlapping time windows. Methods: A closed-loop compensatory tracking task with myocontrol and electrotactile stimulation was used to investigate how the duration of the feedback window (FW) influences the ability to perceive the feedback information and react with an appropriate control action. Nine subjects performed eight trials with continuous recording and contralateral feedback (CONT-CLT) and TDM with ispilateral stimulation and recording using the FW of 40 ms (TDM40), 100 ms (TDM100) and 300 ms (TDM300). The tracking quality was evaluated by comparing the reference and generated trajectories using cross-correlation coefficient (CCCOEF), time delay, root mean square tracking error, and the amount of overshoot. Results: The control performance in CONT-CLT was the best in all the outcome measures. The overall worst performance was obtained using TDM with the shortest FW (TDM40). There was no significant difference between TDM100 and TDM300, and the quality of tracking in these two conditions was high (CCCOEF ∼0.95). The results demonstrated that FW duration is indeed an important parameter in TDM, which appears to have an optimal value. Among the tested cases, the FW duration of 100 ms seems to be the best trade-off between the quality of perception and a limited command update rate. Conclusions: This study represents the first systematic evaluation of a TDM-based approach for closing the loop using electrotactile feedback in myoelectric systems. The overall conclusion is that TDM is a feasible and attractive method for closed-loop myocontrol, since it is easy to implement (software-only solution), has limited impact on the performance when using proper FW duration, and might decrease habituation due to burst-like stimulation delivery.

Cite

CITATION STYLE

APA

Dosen, S., Schaeffer, M. C., & Farina, D. (2014). Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback. Journal of NeuroEngineering and Rehabilitation, 11(1). https://doi.org/10.1186/1743-0003-11-138

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free