A cloud service architecture for analyzing big monitoring data

23Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

Cloud monitoring is of a source of big data that are constantly produced from traces of infrastructures, platforms, and applications. Analysis of monitoring data delivers insights of the system's workload and usage pattern and ensures workloads are operating at optimum levels. The analysis process involves data query and extraction, data analysis, and result visualization. Since the volume of monitoring data is big, these operations require a scalable and reliable architecture to extract, aggregate, and analyze data in an arbitrary range of granularity. Ultimately, the results of analysis become the knowledge of the system and should be shared and communicated. This paper presents our cloud service architecture that explores a search cluster for data indexing and query. We develop REST APIs that the data can be accessed by different analysis modules. This architecture enables extensions to integrate with software frameworks of both batch processing (such as Hadoop) and stream processing (such as Spark) of big data. The analysis results are structured in Semantic Media Wiki pages in the context of the monitoring data source and the analysis process. This cloud architecture is empirically assessed to evaluate its responsiveness when processing a large set of data records under node failures.

Cite

CITATION STYLE

APA

Singh, S., & Liu, Y. (2016). A cloud service architecture for analyzing big monitoring data. Tsinghua Science and Technology, 21(1), 55–70. https://doi.org/10.1109/TST.2016.7399283

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free