Before a structure or component can be completed, before any analytical model can be constructed, and even before the design can be formulated, you must have a fundamental understanding of damage behavior in order to produce a safe and effective design. Damage Mechanics presents the underlying principles of continuum damage mechanics along with the latest research. The authors consider both isotropic and anisotropic theories as well as elastic and elasto-plastic damage analyses using a self-contained, easily understood approach. Beginning with the requisite mathematics, Damage Mechanics guides you from the very basic concepts to advanced mathematical and mechanical models. The first chapter offers a brief MAPLE® tutorial and supplies all of the MAPLE commands needed to solve the various problems throughout the chapter. The authors then discuss the basics of elasticity theory within the continuum mechanics framework, the simple case of isotropic damage, effective stress, damage evolution, kinematic description of damage, and the general case of anisotropic damage. The remainder of the book includes a review of plasticity theory, formulation of a coupled elasto-plastic damage theory developed by the authors, and the kinematics of damage for finite-strain elasto-plastic solids. From fundamental concepts to the latest advances, this book contains everything that you need to study the damage mechanics of metals and homogeneous materials.
CITATION STYLE
Voyiadjis, G. Z., & Kattan, P. I. (2005). Damage mechanics. Damage Mechanics (pp. 1–254). CRC Press. https://doi.org/10.1017/cbo9781139167970.011
Mendeley helps you to discover research relevant for your work.