The effects of sperm-immobilization methods on decondensation of sperm chromatin and retention of subacrosomal sperm perinuclear theca (SAR-PT) after intracytoplasmic sperm injection (ICSI) were examined in pigs. Sperm membrane damage caused by different immobilization methods by rubbing with a micropipette without piezo pulses (R), or with a low (L) or high (H) intensity of piezo pulses while rubbing, was assessed by the time required for staining of sperm heads with eosin Y solution. The average time for staining of sperm heads immobilized by the R, L or H treatments was 76, 41 or 26 s, respectively. The fertilization rate following ICSI was increased by sperm immobilization by piezo pulses compared with R, but increased intensity of pulses from L to H did not cause further improvements (29, 48 and 47%, respectively). An immunofluorescence study revealed that H immobilization promoted the dissociation of SAR-PT from sperm chromatin compared with L and R, and it increased the frequency of male pronuclear formation in which chromatin appeared uniformly decondensed. With in vitro fertilization (IVF), SAR-PT disassembled coordinately with sperm chromatin decondensation and it was not detectable around male pronuclei. This was different from most of the oocytes after ICSI in which remnants SAR-PT were detected adjacent to male pronuclei. We concluded that increased damage on the sperm plasma membrane at immobilization improved fertilization rates and decondensation of sperm chromatin after ICSI due to the accelerated dissociation of SAR-PT from the sperm nucleus. Also, the behavior of SAR-PT after ICSI was different from that observed in oocytes after IVF. © 2005 Society for Reproduction and Fertility.
CITATION STYLE
Katayama, M., Sutovsky, P., Yang, B. S., Cantley, T., Rieke, A., Farwell, R., … Day, B. N. (2005). Increased disruption of sperm plasma membrane at sperm immobilization promotes dissociation of perinuclear theca from sperm chromatin after intracytoplasmic sperm injection in pigs. Reproduction, 130(6), 907–916. https://doi.org/10.1530/rep.1.0680
Mendeley helps you to discover research relevant for your work.