The paper provides a novel cooperative motion scheme for networked Unmanned Aerial Vehicles (UAVs) to fully sweep-cover a priori unknown elongated areas with curved borders, which are termed "valley areas." The UAVs' motion is confined between the borders. Different from former research on straight-corridor-sweep-coverage, in each valley area, the width of different portions varies dramatically: the UAVs need to line up across the valley area to achieve full coverage of the widest portions while they can only pass through the narrowest parts one by one in a queue. The UAVs are provided with barrier detection and inter-UAV communication. According to the scheme, a distributed control law has been offered for discrete-time multi-UAV systems, guaranteeing crash avoidance and full coverage while considering the constrained mobility of the UAVs. Regular and extreme simulations are carried out to verify the efficacy and stability of the proposed algorithm. Solutions to U-shaped valley coverage and the case of insufficient UAVs available are discussed with validation simulations. Comparison simulations are conducted with respect to a line-sweep-coverage algorithm developed by a closely related work, and differences in performance are revealed subsequently. Conclusions are drawn with possible directions of future research.
CITATION STYLE
Shi, M., & Qin, K. (2016). Distributed Control of Networked Unmanned Aerial Vehicles for Valley Area Coverage. Mobile Information Systems, 2016. https://doi.org/10.1155/2016/3680265
Mendeley helps you to discover research relevant for your work.