Exceptionally rapid oxime and hydrazone formation promoted by catalytic amine buffers with low toxicity

64Citations
Citations of this article
143Readers
Mendeley users who have this article in their library.

Abstract

Hydrazone and oxime bond formation between α-nucleophiles (e.g. hydrazines, alkoxy-amines) and carbonyl compounds (aldehydes and ketones) is convenient and is widely applied in multiple fields of research. While the reactants are simple, a substantial drawback is the relatively slow reaction at neutral pH. Here we describe a novel molecular strategy for accelerating these reactions, using bifunctional buffer compounds that not only control pH but also catalyze the reaction. The buffers can be employed at pH 5-9 (5-50 mM) and accelerate reactions by several orders of magnitude, yielding second-order rate constants of >10 M-1 s-1. Effective bifunctional amines include 2-(aminomethyl)imidazoles and N,N-dimethylethylenediamine. Unlike previous diaminobenzene catalysts, the new buffer amines are found to have low toxicity to human cells, and can be used to promote reactions in cellular applications.

Cite

CITATION STYLE

APA

Larsen, D., Kietrys, A. M., Clark, S. A., Park, H. S., Ekebergh, A., & Kool, E. T. (2018). Exceptionally rapid oxime and hydrazone formation promoted by catalytic amine buffers with low toxicity. Chemical Science, 9(23), 5252–5259. https://doi.org/10.1039/c8sc01082j

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free