An improved understanding of the endocannabinoid system has provided new avenues of drug discovery and development toward the management of pain and other behavioral maladies. Exogenous cannabinoid type 1 (CB1) receptor agonists such as D9-tetrahydrocannabinol are increasingly used for their medicinal actions; however, their utility is constrained by concern regarding abuse-related subjective effects. This has led to growing interest in the clinical benefit of indirectly enhancing the activity of the highly labile endocannabinoids N-arachidonoylethanolamine [AEA (or anandamide)] and/or 2-arachidonoylglycerol (2-AG) via catabolic enzyme inhibition. The present studies were conducted to determine whether such actions can lead to CB1 agonist–like subjective effects, as reflected in CB1-related discriminative stimulus effects in laboratory subjects. Squirrel monkeys (n 5 8) that discriminated the CB1 full agonist AM4054 (0.01 mg/kg) from vehicle were used to study, first, the inhibitors of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MGL) alone or in combination [FAAH (URB597, AM4303); MGL (AM4301); FAAH/MGL (JZL195, AM4302)] and, second, the ability of the endocannabinoids AEA and 2-AG to produce CB1 agonist–like effects when administered alone or after enzyme inhibition. Results indicate that CB1-related discriminative stimulus effects were produced by combined, but not selective, inhibition of FAAH and MGL, and that these effects were nonsurmount-ably antagonized by low doses of rimonabant. Additionally, FAAH or MGL inhibition revealed CB1-like subjective effects produced by AEA but not by 2-AG. Taken together, the present data suggest that therapeutic effects of combined, but not selective, enhancement of AEA or 2-AG activity via enzyme inhibition may be accompanied by CB1 receptor–mediated subjective effects.
CITATION STYLE
Leonard, M. Z., Alapafuja, S. O., Ji, L., Shukla, V. G., Liu, Y., Nikas, S. P., … Kangas, B. D. (2017). Cannabinoid CB1 discrimination: effects of endocannabinoids and catabolic enzyme inhibitors. Journal of Pharmacology and Experimental Therapeutics, 363(3), 314–323. https://doi.org/10.1124/jpet.117.244392
Mendeley helps you to discover research relevant for your work.