STAN: spatio-temporal attention network for pandemic prediction using real-world evidence

78Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective: We aim to develop a hybrid model for earlier and more accurate predictions for the number of infected cases in pandemics by (1) using patients' claims data from different counties and states that capture local disease status and medical resource utilization; (2) utilizing demographic similarity and geographical proximity between locations; and (3) integrating pandemic transmission dynamics into a deep learning model. Materials and Methods: We proposed a spatio-temporal attention network (STAN) for pandemic prediction. It uses a graph attention network to capture spatio-temporal trends of disease dynamics and to predict the number of cases for a fixed number of days into the future. We also designed a dynamics-based loss term for enhancing long-term predictions. STAN was tested using both real-world patient claims data and COVID-19 statistics over time across US counties. Results: STAN outperforms traditional epidemiological models such as susceptible-infectious-recovered (SIR), susceptible-exposed-infectious-recovered (SEIR), and deep learning models on both long-term and short-term predictions, achieving up to 87% reduction in mean squared error compared to the best baseline prediction model. Conclusions: By combining information from real-world claims data and disease case counts data, STAN can better predict disease status and medical resource utilization.

Cite

CITATION STYLE

APA

Gao, J., Sharma, R., Qian, C., Glass, L. M., Spaeder, J., Romberg, J., … Xiao, C. (2021). STAN: spatio-temporal attention network for pandemic prediction using real-world evidence. Journal of the American Medical Informatics Association, 28(4), 733–743. https://doi.org/10.1093/jamia/ocaa322

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free