A Critical Review of Emerging Technologies for Flash Flood Prediction: Examining Artificial Intelligence, Machine Learning, Internet of Things, Cloud Computing, and Robotics Techniques

1Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.
Get full text

Abstract

There has been growing interest in the application of smart technologies for hazard management. However, very limited studies have reviewed the trends of such technologies in the context of flash floods. This study reviews innovative technologies such as artificial intelligence (AI)/machine learning (ML), the Internet of Things (IoT), cloud computing, and robotics used for flash flood early warnings and susceptibility predictions. Articles published between 2010 and 2023 were manually collected from scientific databases such as Google Scholar, Scopus, and Web of Science. Based on the review, AI/ML has been applied to flash flood susceptibility and early warning prediction in 64% of the published papers, followed by the IoT (19%), cloud computing (6%), and robotics (2%). Among the most common AI/ML methods used in susceptibility and early warning predictions are random forests and support vector machines. However, further optimization and emerging technologies, such as computer vision, are required to improve these technologies. AI/ML algorithms have demonstrated very accurate prediction performance, with receiver operating characteristics (ROC) and areas under the curve (AUC) greater than 0.90. However, there is a need to improve on these current models with large test datasets. Through AI/ML, IoT, and cloud computing technologies, early warnings can be disseminated to targeted communities in real time via electronic media, such as SMS and social media platforms. In spite of this, these systems have issues with internet connectivity, as well as data loss. Additionally, Al/ML used a number of topographical variables (such as slope), geological variables (such as lithology), and hydrological variables (such as stream density) to predict susceptibility, but the selection of these variables lacks a clear theoretical basis and has inconsistencies. To generate more reliable flood risk assessment maps, future studies should also consider sociodemographic, health, and housing data. Considering future climate change impacts, susceptibility or early warning studies may be projected under different climate change scenarios to help design long-term adaptation strategies.

Cite

CITATION STYLE

APA

Al-Rawas, G., Nikoo, M. R., Al-Wardy, M., & Etri, T. (2024, July 1). A Critical Review of Emerging Technologies for Flash Flood Prediction: Examining Artificial Intelligence, Machine Learning, Internet of Things, Cloud Computing, and Robotics Techniques. Water (Switzerland). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/w16142069

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free