Eigenvalue multiplicities of highly symmetric graphs

Citations of this article
Mendeley users who have this article in their library.


We find lower bounds on eigenvalue multiplicities for highly symmetric graphs. In particular we prove: Theorem 1. If Γ is distance-regular with valency k and girth g (g≥4), and λ (λ≠±-k) is an eigenvalue of Γ, then the multiplicity of λ is at least k(k-1)[ g 4]-1 if g≡0 or 1 (mod 4), 2(k-1)[ g 4] if g≡2 or 3 (mod 4) where [ ] denotes integer part. Theorem 2. If the automorphism group of a regular graph Γ with girth g (g≥4) and valency k acts transitively on s-arcs for some s, 1≤s≤[ 1 2g], then the multiplicity of any eigenvalue λ (λ≠±-k) is at least k(k-1)s 2-1 if s is even, 2(k-1)( s-1) 2 if s is odd. © 1982.




Terwilliger, P. (1982). Eigenvalue multiplicities of highly symmetric graphs. Discrete Mathematics, 41(3), 295–302. https://doi.org/10.1016/0012-365X(82)90025-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free