Pyrogenic carbon (PyC), generated by fire, acts as a stable carbon deposit in natural ecosystems and is widely used to reconstruct fire history. Fuel type and burning temperature are the two major factors that influence PyC properties and exert variable effects on soil carbon pools, especially for peatlands. However, whether analysis of PyC can identify these two factors remains unclear. To address this knowledge gap, we selected typical peatland plant litters of seven shrub and seven herb plants in the Great Khingan Mountains, China. The properties of PyC produced at 250°C (low-intensity burning) and 600°C (high-intensity burning) without oxygen were evaluated. The results showed that the effects of burning temperature and plant type on δ13C-PyC were not significant. The differences in the initial compositions of herbs and shrubs led to more aromatic and carboxylic compounds in shrub PyC than in herb PyC. A high burning temperature led to less labile components (e.g. aliphatic compounds and acids) and higher thermal stability of high-temperature PyC compared to that of low-temperature PyC. Our results also indicate that several typical PyC chemical composition indicators (e.g. Fourier-transform infrared spectroscopy 1515/1050 ratio and 1720/1050 ratio) can potentially identify PyC sources.
CITATION STYLE
Gao, C., Cong, J., Sun, Y., Han, D., & Wang, G. (2022). Variability in pyrogenic carbon properties generated by different burning temperatures and peatland plant litters: implication for identifying fire intensity and fuel types. International Journal of Wildland Fire, 31(4), 395–408. https://doi.org/10.1071/WF21053
Mendeley helps you to discover research relevant for your work.