Coronavirus disease 2019 (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1–3 and individuals with COVID-19 have symptoms that can be asymptomatic, mild, moderate or severe4,5. In the early phase of infection, T- and B-cell counts are substantially decreased6,7; however, IgM8–11 and IgG12–14 are detectable within 14 d after symptom onset. In COVID-19-convalescent individuals, spike-specific neutralizing antibodies are variable3,15,16. No specific drug or vaccine is available for COVID-19 at the time of writing; however, patients benefit from treatment with serum from COVID-19-convalescent individuals17,18. Nevertheless, antibody responses and cross-reactivity with other coronaviruses in COVID-19-convalescent individuals are largely unknown. Here, we show that the majority of COVID-19-convalescent individuals maintained SARS-CoV-2 spike S1- and S2-specific antibodies with neutralizing activity against the SARS-CoV-2 pseudotyped virus, and that some of the antibodies cross-neutralized SARS-CoV, Middle East respiratory syndrome coronavirus or both pseudotyped viruses. Convalescent individuals who experienced severe COVID-19 showed higher neutralizing antibody titres, a faster increase in lymphocyte counts and a higher frequency of CXCR3+ T follicular help (TFH) cells compared with COVID-19-convalescent individuals who experienced non-severe disease. Circulating TFH cells were spike specific and functional, and the frequencies of CXCR3+ TFH cells were positively associated with neutralizing antibody titres in COVID-19-convalescent individuals. No individuals had detectable autoantibodies. These findings provide insights into neutralizing antibody responses in COVID-19-convalescent individuals and facilitate the treatment and vaccine development for SARS-CoV-2 infection.
CITATION STYLE
Zhang, J., Wu, Q., Liu, Z., Wang, Q., Wu, J., Hu, Y., … Qu, X. (2021). Spike-specific circulating T follicular helper cell and cross-neutralizing antibody responses in COVID-19-convalescent individuals. Nature Microbiology, 6(1), 51–58. https://doi.org/10.1038/s41564-020-00824-5
Mendeley helps you to discover research relevant for your work.