Hepatobiliary surgery based on intelligent image segmentation technology

1Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Liver disease is an important disease that seriously threatens human health. It accounts for the highest proportion in various malignant tumors, and its incidence rate and mortality are on the rise, seriously affecting human health. Modern imaging has developed rapidly, but the application of image segmentation in liver tumor surgery is still rare. The application of image processing technology represented by artificial intelligence (AI) in surgery can greatly improve the efficiency of surgery, reduce surgical complications, and reduce the cost of surgery. Hepatocellular carcinoma is the most common malignant tumor in the world, and its mortality is second only to lung cancer. The resection rate of liver cancer surgery is high, and it is a multidisciplinary surgery, so it is necessary to explore the possibility of effective switching between different disciplines. Resection of hepatobiliary and pancreatic tumors is one of the most challenging and lethal surgical procedures. The operation requires a high level of doctors' experience and understanding of anatomical structures. The surgical segmentation is slow and there may be obvious complications. Therefore, the surgical system needs to make full use of the relevant functions of AI technology and computer vision analysis software, and combine the processing strategy based on image processing algorithm and computer vision analysis model. Intelligent optimization algorithm, also known as modern heuristic algorithm, is an algorithm with global optimization performance, strong universality, and suitable for parallel processing. This algorithm generally has a strict theoretical basis, rather than relying solely on expert experience. In theory, the optimal solution or approximate optimal solution can be found in a certain time. This work studies the hepatobiliary surgery through intelligent image segmentation technology, and analyzes them through intelligent optimization algorithm. The research results showed that when other conditions were the same, there were three patients who had adverse reactions in hepatobiliary surgery through intelligent image segmentation technology, accounting for 10%. The number of patients with adverse reactions in hepatobiliary surgery by conventional methods was nine, accounting for 30%, which was significantly higher than the former, indicating a positive relationship between intelligent image segmentation technology and hepatobiliary surgery.

Cite

CITATION STYLE

APA

Wang, F., Xiao, C., Jia, T., Pan, L., Du, F., & Wang, Z. (2023). Hepatobiliary surgery based on intelligent image segmentation technology. Open Life Sciences, 18(1). https://doi.org/10.1515/biol-2022-0674

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free