Conditional robustness analysis for fragility discovery and target identification in biochemical networks and in cancer systems biology

10Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The study of cancer therapy is a key issue in the field of oncology research and the development of target therapies is one of the main problems currently under investigation. This is particularly relevant in different types of tumor where traditional chemotherapy approaches often fail, such as lung cancer. Results: We started from the general definition of robustness introduced by Kitano and applied it to the analysis of dynamical biochemical networks, proposing a new algorithm based on moment independent analysis of input/output uncertainty. The framework utilizes novel computational methods which enable evaluating the model fragility with respect to quantitative performance measures and parameters such as reaction rate constants and initial conditions. The algorithm generates a small subset of parameters that can be used to act on complex networks and to obtain the desired behaviors. We have applied the proposed framework to the EGFR-IGF1R signal transduction network, a crucial pathway in lung cancer, as an example of Cancer Systems Biology application in drug discovery. Furthermore, we have tested our framework on a pulse generator network as an example of Synthetic Biology application, thus proving the suitability of our methodology to the characterization of the input/output synthetic circuits. Conclusions: The achieved results are of immediate practical application in computational biology, and while we demonstrate their use in two specific examples, they can in fact be used to study a wider class of biological systems.

References Powered by Scopus

Comprehensive molecular characterization of human colon and rectal cancer

6750Citations
N/AReaders
Get full text

A synthetic oscillatory network of transcriptional regulators

3622Citations
N/AReaders
Get full text

Construction of a genetic toggle switch in Escherichia coli

3406Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Robustness: linking strain design to viable bioprocesses

31Citations
N/AReaders
Get full text

Application of conditional robust calibration to ordinary differential equations models in computational systems biology: A comparison of two sampling strategies

7Citations
N/AReaders
Get full text

Robust Calibration of High Dimension Nonlinear Dynamical Models for Omics Data: An Application in Cancer Systems Biology

7Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Bianconi, F., Baldelli, E., Luovini, V., Petricoin, E. F., Crinò, L., & Valigi, P. (2015). Conditional robustness analysis for fragility discovery and target identification in biochemical networks and in cancer systems biology. BMC Systems Biology, 9(1). https://doi.org/10.1186/s12918-015-0216-5

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 10

56%

Researcher 6

33%

Professor / Associate Prof. 2

11%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 5

42%

Computer Science 3

25%

Engineering 2

17%

Agricultural and Biological Sciences 2

17%

Article Metrics

Tooltip
Social Media
Shares, Likes & Comments: 58

Save time finding and organizing research with Mendeley

Sign up for free