The biomolecular basis of adipogenic differentiation of adipose-derived stem cells

56Citations
Citations of this article
95Readers
Mendeley users who have this article in their library.

Abstract

There is considerable attention regarding the role of receptor signaling and downstream-regulated mediators in the homeostasis of adipocytes, but less information is available concerning adipose-derived stem cell (ASC) biology. Recent studies revealed that the pathways regulating ASC differentiation involve the activity of receptor tyrosine kinases (RTKs), including fibroblast growth factor, vascular endothelial growth factor, ErbB receptors and the downstream-regulated serine/threonine protein kinase B (Akt) and phosphatase and tensin homolog (PTEN) activity. RTKs are cell surface receptors that represent key regulators of cellular homeostasis but also play a critical role in the progression of cancer. Many of the metabolic effects and other consequences of activated RTKs are mediated by the modulation of Akt and extracellular signal-regulated protein kinases 1 (Erk-1) signaling. Akt activity sustains survival and the adipogenic differentiation of ASCs, whereas Erk-1 appears downregulated. The inhibition of FGFR-1, EGFR and ErbB2 reduced proliferation, but only FGFR-1 inihibition reduced Akt activity and adipogenesis. Adipogenesis and neovascularization are also chronologically and spatially coupled processes and RTK activation and downstream targets are also involved in ASC-mediated angiogenesis. The potentiality of ASCs and the possibility to modulate specific molecular pathways underlying ASC biological processes and, in particular, those shared with cancer cells, offer new exciting strategies in the field of regenerative medicine. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Cite

CITATION STYLE

APA

Scioli, M. G., Bielli, A., Gentile, P., Mazzaglia, D., Cervelli, V., & Orlandi, A. (2014, April 16). The biomolecular basis of adipogenic differentiation of adipose-derived stem cells. International Journal of Molecular Sciences. MDPI AG. https://doi.org/10.3390/ijms15046517

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free