Hedging CDO tranches in a Markovian environment

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this first chapter, we show that a CDO tranche payoff can be perfectly replicated with a self-financed strategy based on the underlying credit default swaps. This extends to any payoff which depends only upon default arrivals, such as basket default swaps. Clearly, the replication result is model dependent and relies on two critical assumptions. First, we preclude the possibility of simultaneous defaults. The other assumption is that credit default swap premiums are adapted to the filtration of default times which therefore can be seen as the relevant information set on economic grounds. Our framework corresponds to a pure contagion model, where the arrivals of defaults lead to jumps in the credit spreads of survived names, the magnitude of which depending upon the names in question, and the whole history of defaults up to the current time. These jumps can be related to the derivatives of the joint survival function of default times. The dynamics of replicating prices of CDO tranches follows the same way. In other words, we only deal with default risks and not with spread risks. Unsurprisingly, the possibility of perfect hedging is associated with a martingale representation theorem under the filtration of default times. Subsequently, we exhibit a new probability measure under which the short term credit spreads (up to some scaling factor due to positive recovery rates) are the intensities associated with the corresponding default times. For ease of presentation, we introduced first some instantaneous default swaps as a convenient basis of hedging instruments. Eventually, we can exhibit a replicating strategy of a CDO tranche payoff with respect to actually traded credit default swaps, for instance, with the same maturity as the CDOtranche. Letus note that no Markovian assumption is required for the existence of such a replicating strategy. However, the practical implementation of actual hedging strategies requires some extra assumptions. We assume that all pre-default intensities are equal and only depend upon the current number of defaults. We also assume that all recovery rates are constant across names and time. In that framework, it can be shown that the aggregate loss process is a homogeneous Markov chain, more precisely a pure death process. Thanks to these restrictions, the model involves as many unknown parameters as the number of underlying names. Such Markovian model is also known as a local intensity model, the simplest form of aggregate loss models. As in local volatility models in the equity derivatives world, there is a perfect match of unknown parameters from a complete set of CDO tranches quotes. Numerical implementation can be achieved through a binomial tree, well-known to finance people, or by means of Markov chain techniques. We provide some examples and show that the market quotes of CDOs are associated with pronounced contagion effects. We can therefore explain the dynamics of the amount of hedging CDS and relate them to deltas computed by market practitioners. The figures are hopefully roughly the same, the discrepancies being mainly explained by contagion effects leading to an increase of dependence between default times after some defaults.

Cite

CITATION STYLE

APA

Cousin, A., Jeanblanc, M., & Laurent, J. P. (2011). Hedging CDO tranches in a Markovian environment. Lecture Notes in Mathematics, 2003, 1–61. https://doi.org/10.1007/978-3-642-14660-2_1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free