Arrestin-dependent but G-protein coupled receptor kinase-independent uncoupling of D2-dopamine receptors

16Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (Kir3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-K ir3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor. The classical model for the uncoupling and desensitization of G-protein coupled receptors (GPCRs) involves the phosphorylation of the agonist-bound receptor by G protein coupled receptor kinases (GRK), followed by the binding of arrestin to the GRK phosphorylated agonist-activated receptor. We reconstituted D2-dopamine receptor (D2R) signaling in Xenopus oocytes to show that arrestin-mediated uncoupling of D2R from associated G proteins (Gαβγ) occurs independently of GRKs. The classical model for the uncoupling and desensitization of G-protein coupled receptors (GPCRs) involves the phosphorylation of the agonist-bound receptor by G protein coupled receptor kinases (GRK), followed by the binding of arrestin to the GRK phosphorylated agonist-activated receptor. We reconstituted D2-dopamine receptor (D2R) signaling in Xenopus oocytes to show that arrestin-mediated uncoupling of D2R from associated G proteins (Gαβγ) occurs independently of GRKs. © 2013 International Society for Neurochemistry.

Cite

CITATION STYLE

APA

Celver, J., Sharma, M., Thanawala, V., Christopher Octeau, J., & Kovoor, A. (2013). Arrestin-dependent but G-protein coupled receptor kinase-independent uncoupling of D2-dopamine receptors. Journal of Neurochemistry, 127(1), 57–65. https://doi.org/10.1111/jnc.12359

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free