Bagged potting mixes can be stored for weeks or months before being used by consumers. Some bagged potting mixes are amended with organic fertilizers such as poultry litter (PL), although there is little knowledge about how these and other organic fertilizers release in the substrate while in storage. The objective of this research was to determine nutrient availability from an organic PL fertilizer in a bagged potting substrate stored at different temperatures and with varying initial moisture content (IMC). The base substrate composed of 60 sphagnum peat: 30 bark: 10 perlite (by vol.) amended with 5.5 g·L−1 dolomitic limestone and 0.5 g·L−1 granular wetting agent. This base substrate was either not amended with additional fertilizer [nonfertilized control (NFC)] or amended with a PL fertilizer (microSTART60, 3N–0.9P–2.5K) in its original pelletized form (PL-P) or ground (PL-G), or an uncoated prill fertilizer (UPF, 15N–6.5P–12.5K). Substrates had IMCs of 25%, 45%, or 65% (by weight) and were stored at either 20 or 40 °C. The UPF treatment resulted in lower pH, higher electrical conductivity (EC), and higher percent recovered nitrogen (N) compared with other treatments, as was expected with a readily soluble fertilizer. Poultry litter particle size had no effect on any of the measured chemical properties of the stored substrates. Both PL fertilizer treatments resulted in pH similar to or lower than the NFC. The two PL fertilizers had higher EC throughout the experiment (1.59–2.76 mS·cm−1) than NFC (0.13–0.35 mS·cm−1). Poultry litter fertilizer provided a stable source of N in bagged potting mix over a range of IMC and storage temperatures, with little change in total N released over time.
CITATION STYLE
Altland, J. E., & Jeong, K. Y. (2018). Initial substrate moisture content and storage temperature affect chemical properties of bagged substrates containing poultry litter fertilizer. HortScience, 53(8), 1191–1196. https://doi.org/10.21273/HORTSCI13004-18
Mendeley helps you to discover research relevant for your work.