Due to the distributed and dynamic characteristics of the Internet of Vehicles (IoV) and the continuous growth in the number of devices, content-centric decentralized vehicular named data networking (VNDN) has become more suitable for content-oriented applications in IoV. However, the existing centralized architecture is prone to the failure of single points, which results in trust problems in key verification between cross-domain nodes and consuming more power and reducing the lifetime. Focusing on secure key management and power-efficient routing, this article proposes a blockchain-based key management and green routing scheme for VNDN. A blockchain-based key management scheme is presented to achieve secure and efficient distribution and verification of keys. Specifically, all trusted agencies (TAs) form a consortium blockchain for storing public key hashes to ensure the authenticity of users' public keys. A green global routing scheme based on node relaying pressure (GGNRP) is proposed to save power consumption and reduce the forwarding delay. A new node relay pressure metric is introduced to assist with routing decisions. Detailed experiments and analysis show that, compared with the existing scheme, the proposed scheme can achieve secure key management and GGNRP can decrease the power consumption and average delay by 15.8% and 63.2%, respectively.
CITATION STYLE
Liu, H., Zhu, R., Wang, J., & Xu, W. (2021). Blockchain-Based Key Management and Green Routing Scheme for Vehicular Named Data Networking. Security and Communication Networks, 2021. https://doi.org/10.1155/2021/3717702
Mendeley helps you to discover research relevant for your work.