Pulsed Electric field (PEF) cell lysis technology, as a new technology, has been widely used in the fields of food sterilization. Nowadays, there are still several problems in PEF cell lysis: low cell lysis rate, high temperature rise, the presence of low velocity regions, etc. In this study, COMSOL Multiphysics was used to conduct simulation research, and the electric field, flow field and temperature field of plate treatment chamber, coaxial treatment chamber and co-field treatment chamber were coupled to simulate, and the advantages and disadvantages of the three classical treatment chamber structures were analyzed. In addition, this paper proposes a new structure of the co-field treatment chamber. Through the comparison and simulation of the coupling between our design and other four structures, the electric field intensity of our design treatment area is 20.03 kV/m, which is 46.2% higher than the highest of others. The temperature rise within 1s is 0.93 K, which is 2/3 lower than others. Our design almost eliminates the peak electric field area at the junction between the inside of the electrode and the insulator, and the maximum electric field intensity in this area is reduced by 24.4% compared with others.
CITATION STYLE
Wang, Y., Sha, K., Guo, X., Chen, J., Chen, Q., & Jiang, F. (2023). Optimization and simulation of pulsed electric field treatment chamber for food sterilization. Food Science and Technology (Brazil), 43. https://doi.org/10.1590/fst.126022
Mendeley helps you to discover research relevant for your work.