Transmission dynamics of resistant bacteria in a predator-prey system

1Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper discusses the impact on human health caused by the addition of antibiotics in the feed of food animals. We use the established transmission rule of resistant bacteria and combine it with a predator-prey system to determine a differential equations model. The equations have three steady equilibrium points corresponding to three population dynamics states under the influence of resistant bacteria. In order to quantitatively analyze the stability of the equilibrium points, we focused on the basic reproduction numbers. Then, both the local and global stability of the equilibrium points were quantitatively analyzed by using essential mathematical methods. Numerical results are provided to relate our model properties to some interesting biological cases. Finally, we discuss the effect of the two main parameters of the model, the proportion of antibiotics added to feed and the predation rate, and estimate the human health impacts related to the amount of feed antibiotics used. We further propose an approach for the prevention of the large-scale spread of resistant bacteria and illustrate the necessity of controlling the amount of in-feed antibiotics used.

Cite

CITATION STYLE

APA

Gao, X., Pan, Q., & He, M. (2015). Transmission dynamics of resistant bacteria in a predator-prey system. Computational and Mathematical Methods in Medicine, 2015. https://doi.org/10.1155/2015/638074

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free