Ras is the most frequently activated oncogene found inhuman cancer, but its mechanisms of action remain only partially understood. Ras activates multiple signaling pathways to promote transformation. However, Ras can also exhibit a potent ability to induce growth arrest and death. NORE1A (RASSF5) is a direct Ras effector that acts as a tumor suppressor by promoting apoptosis and cell cycle arrest. Expression of NORE1A is frequently lost in human tumors, and its mechanism of action remains unclear. Here we show that NORE1A forms a direct, Ras-regulated complex with β-TrCP, the substrate recognition component of the SCFβ-TrCP ubiquitin ligase complex. This interaction allows Ras to stimulate the ubiquitin ligase activity of SCFβ-TrCP toward its target β-catenin, resulting in degradation of β-catenin by the 26 S proteasome. However, the action of Ras/NORE1A/β-TrCP is substrate-specific because IκB, another substrate of SCFβ-TrCP, is not sensitive to NORE1A-promoted degradation. We identify a completely new signaling mechanism for Ras that allows for the specific regulation of SCFβ-TrCP targets. We show that the NORE1A levels in a cell may dictate the effects of Ras on the Wnt/β-catenin pathway. Moreover, because NORE1A expression is frequently impaired in tumors, we provide an explanation for the observation that β-TrCP can act as a tumor suppressor or an oncogene in different cell systems.
CITATION STYLE
Schmidt, M. L., Donninger, H., & Clark, G. J. (2014). Ras regulates SCFβ-TrCP protein activity and specificity via its effector protein NORE1A. Journal of Biological Chemistry, 289(45), 31102–31110. https://doi.org/10.1074/jbc.M114.594283
Mendeley helps you to discover research relevant for your work.