Bottom-up physiologically-based biokinetic modelling as an alternative to animal testing

15Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

There is a growing need to develop alternatives to animal testing to derive biokinetic data for evaluating both efficacy and safety of chemicals. One such alternative is bottom-up physiologically-based biokinetic (PBK) modeling, which requires only in vitro data. The primary objective of this study was to develop and validate bottom-up PBK models of 3 HMG-CoA reductase inhibitors: rosuvastatin, fluvastatin, and pitavastatin. Bottom-up PBK models were built using the Simcyp® simulator by incorporating in vitro transporter and metabolism data (Vmax, Jmax, Km, CLint) obtained from the literature and proteomics-based scaling factors to account for differences in transporter expression between in vitro systems and in vivo organs. Simulations were performed for single intravenous, single oral, and multiple oral doses of these chemicals. The results showed that our bottom-up models predicted systemic exposure (AUC0h-t), maximum plasma concentration (Cmax), plasma clearance, and time to reach Cmax (Tmax) within two-fold of the observed data, with the exception of parameters associated with multiple oral pitavastatin dosing and single oral fluvastatin dosing. Additional middle-out simulations were performed using animal distribution data to inform tissue-to-plasma equilibrium distribution ratios for rosuvastatin and pitavastatin. This improved the predicted plasma-concentration time profiles but did not significantly alter the predicted biokinetic parameters. Our study demonstrates that quantitative proteomics-based mechanistic in vitro-to-in vivo extrapolation (IVIVE) can account for downregulation of transporters in culture and predict whole organ clearance without empirical scaling. Hence, bottom-up PBK modeling incorporating mechanistic IVIVE could be a viable alternative to animal testing in predicting human biokinetics.

Cite

CITATION STYLE

APA

Chan, J. C. Y., Tan, S. P. F., Upton, Z., & Chan, E. C. Y. (2019). Bottom-up physiologically-based biokinetic modelling as an alternative to animal testing. Altex, 36(4), 597–612. https://doi.org/10.14573/altex.1812051

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free