Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands

81Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In vibrios and enterobacteria lateral gene transfer is often facilitated by integrating conjugative elements (ICEs) of the SXT/R391 family. SXT/R391 ICEs integrate by site-specific recombination into prfC and transfer by conjugation, a process that is initiated at a specific locus called the origin of transfer (oriTSXT). We identified genomic islands (GIs) harbouring a sequence that shares >63% identity with oriTSXT in three species of Vibrio. Unlike SXT/R391 ICEs, these GIs are integrated into a gene coding for a putative stress-induced protein and do not appear to carry any gene coding for a conjugative machinery or for mobilization proteins. Our results show that SXT/R391 ICEs trigger the excision and mediate the conjugative transfer in trans of the three Vibrio GIs at high frequency. GIs' excision is independent of the ICE-encoded recombinase and is controlled by the ICE-encoded transcriptional activator SetCD, which is expressed during the host SOS response. Both mobI and traI, two ICE-borne genes involved in oriT recognition, are essential for GIs' transfer. We also found that SXT/R391 ICEs mobilize in trans over 1 Mb of chromosomal DNA located 5' of the GIs' integration site. Together these results support a novel mechanism of mobilization of GIs by ICEs of the SXT/R391 family. © 2010 Blackwell Publishing Ltd.

Cite

CITATION STYLE

APA

Daccord, A., Ceccarelli, D., & Burrus, V. (2010). Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands. Molecular Microbiology, 78(3), 576–588. https://doi.org/10.1111/j.1365-2958.2010.07364.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free