Many recent tensor network algorithms apply unitary operators to parts of a tensor network in order to reduce entanglement. However, many of the previously used iterative algorithms to minimize entanglement can be slow. We introduce an approximate, fast, and simple algorithm to optimize disentangling unitary tensors. Our algorithm is asymptotically faster than previous iterative algorithms and often results in a residual entanglement entropy that is within 10 to 40% of the minimum. For certain input tensors, our algorithm returns an optimal solution. When disentangling order-4 tensors with equal bond dimensions, our algorithm achieves an entanglement spectrum where nearly half of the singular values are zero. We further validate our algorithm by showing that it can efficiently disentangle random 1D states of qubits.
CITATION STYLE
Slagle, K. (2021). Fast tensor disentangling algorithm. SciPost Physics, 11(3). https://doi.org/10.21468/SCIPOSTPHYS.11.3.056
Mendeley helps you to discover research relevant for your work.