The corrosions caused by sulfate-reducing bacteria (SRB) are serious problems in petroleum exploitation and transportation, which can lead to safety problems, environmental pollutions, and economic losses. Here, a charge-reversal surfactant antibiotic material N-dodecyl-1-carboxylic acid-1-cyclohexenyl-2-carboxamide (C12N-DCA) is designed and synthesized. C12N-DCA is a negatively charged surfactant, which cannot be adsorbed by soil and rock in a large amount. Therefore, it can reach the “lesion location”, with enough concentration. After being hydrolyzed and charge reversed under the acceleration of H2S produced by SRB, C12N-DCA becomes a positively charged surfactant dodecane ammonium salt to kill SRB. Through a simulating experiment, it is found that C12NDCA can reach the SRB inhibition ratio of almost 100%, and it can reduce iron corrosion by 88%. Such an antibiotic material or its homologs may be added to the chemical flooding fluids, killing SRB during petroleum exploitation and reducing the SRB-induced corrosion in the petroleum exploitation and transportation.
CITATION STYLE
Zeng, L., Chang, Y., Wu, Y., Yang, J., Xu, J. F., & Zhang, X. (2020). Charge-reversal surfactant antibiotic material for reducing microbial corrosion in petroleum exploitation and transportation. Science Advances, 6(25). https://doi.org/10.1126/sciadv.aba7524
Mendeley helps you to discover research relevant for your work.