Surface plasmon resonance (SPR) biosensors utilize refractive index changes to sensitively detect mass changes at noble metal sensor surface interfaces. As such, they have been extensively applied to immunoassays of large molecules, where their high mass and use of sandwich immunoassay formats can result in excellent sensitivity. Small molecule immunosensing using SPR is more challenging. It requires antibodies or high-mass or noble metal labels to provide the required signal for ultrasensitive assays. Also, it can suffer from steric hindrance between the small antigen and large antibodies. However, new studies are increasingly meeting these and other challenges to offer highly sensitive small molecule immunosensor technologies through careful consideration of sensor interface design and signal enhancement. This review examines the application of SPR transduction technologies to small molecule immunoassays directed to different classes of small molecule antigens, including the steroid hormones, toxins, drugs and explosives residues. Also considered are the matrix effects resulting from measurement in chemically complex samples, the construction of stable sensor surfaces and the development of multiplexed assays capable of detecting several compounds at once. Assay design approaches are discussed and related to the sensitivities obtained. © 2010 by the authors.
CITATION STYLE
Mitchell, J. (2010, August). Small molecule immunosensing using surface plasmon resonance. Sensors. https://doi.org/10.3390/s100807323
Mendeley helps you to discover research relevant for your work.