Electro-Forming and Electro-Breaking of Nanoscale Ag Filaments for Conductive-Bridging Random-Access Memory Cell using Ag-Doped Polymer-Electrolyte between Pt Electrodes

32Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ag-doped polymer (polyethylene oxide: PEO) conductive-bridging-random-access-memory (CBRAM) cell using inert Pt electrodes is a potential electro-forming free CBRAM cells in which electro-forming and electro-breaking of nanoscale (16∼22-nm in diameter) conical or cylindrical Ag filaments occurs after a set or reset bias is applied. The dependency of the morphologies of the Ag filaments in the PEO polymer electrolyte indicates that the electro-formed Ag filaments bridging the Pt cathode and anode are generated by Ag+ ions drifting in the PEO polymer electrolyte toward the Pt anode and that Ag dendrites grow via a reduction process from the Pt anode, whereas electro-breaking of Ag filaments occurs through the oxidation of Ag atoms in the secondary dendrites and the drift of Ag+ ions toward the Pt cathode. The Ag doping concentration in the PEO polymer electrolyte determines the bipolar switching characteristics; i.e., the set voltage slightly decreases, while the reset voltage and memory margin greatly increases with the Ag doping concentration.

Cite

CITATION STYLE

APA

Song, M. J., Kwon, K. H., & Park, J. G. (2017). Electro-Forming and Electro-Breaking of Nanoscale Ag Filaments for Conductive-Bridging Random-Access Memory Cell using Ag-Doped Polymer-Electrolyte between Pt Electrodes. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02330-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free