Molecular Engineering to Tune Functionality: The Case of Cl-Substituted [Fe(terpy)2]2+

3Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The properties of transition-metal complexes and their chemical dynamics can be effectively modified with ligand substitutions, and theory can be a great aid to such molecular engineering. In this paper, we first theoretically explored how substitution with a Cl atom at different positions of the terpyridine ligand affects the electronic structure of the [Fe(terpy)2]2+ complex. We found that besides the substitution at position 4′, the next most promising candidate to cause substantial electronic effects is that where the side pyridine ring is substituted at position 5 (β). Therefore, next, we examined in detail the Fe(II) complexes of the 5-chloro and 5,5″-dichloro derivatives of terpy, theoretically and experimentally, to reveal how these substitutions modify the ground state properties and the lifetime of the excited quintet state in such complexes. In addition, we extend the investigation to the complexes of the analogously substituted derivatives of 4′-SMe-terpy. The substitution at position(s) 5 (and 5″) with Cl lowers the energy of the quintet state and increases its lifetime; the results on the 4′-SMe-substituted complexes show similar changes with these two substitutions, verifying that these effects are more or less additive. This study contributes to the enhancement of our molecular engineering toolset for modifying the potential energy landscape of similar complexes.

Cite

CITATION STYLE

APA

Papp, M., Keszthelyi, T., Vancza, A., Bajnóczi, É. G., Kováts, É., Németh, Z., … Vankó, G. (2023). Molecular Engineering to Tune Functionality: The Case of Cl-Substituted [Fe(terpy)2]2+. Inorganic Chemistry, 62(16), 6397–6410. https://doi.org/10.1021/acs.inorgchem.3c00271

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free