Energy storage technology can effectively solve the problems caused by large-scale grid connection of renewable energy with volatility and uncertainty. Due to the high cost of the energy storage system, the research on capacity allocation of energy storage system has important theoretical and application value. In this paper, an optimization method for determining the capacity of energy storage system for smoothing the power output of renewable energy is proposed. First, based on the actual data of Ulanqab, the output characteristics of wind power and photovoltaic power generation are studied, and the K-means algorithm is used to select typical days. Then, the energy storage configuration model is built according to the objective function and constraints. Finally, genetic algorithm is used to solve the optimization model, obtain the corresponding parameters, and complete the configuration of energy storage capacity. Based on the results of renewable energy spectrum analysis, the minimum capacity of the energy storage system that meets the constraint of target power output volatility after compensation by the energy storage system can be optimized. The simulation results show that at 1 and 10 min, the flattened volatility is about 2% and 5%, while the actual penetration volatility is about 20% and 30%. The volatility of the optimized model is greatly reduced, which proves the effectiveness of the proposed strategy.
CITATION STYLE
Lv, Y., Qin, R., Sun, H., Guo, Z., Fang, F., & Niu, Y. (2023). Research on energy storage allocation strategy considering smoothing the fluctuation of renewable energy. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1094970
Mendeley helps you to discover research relevant for your work.