Evidence of chemical disequilibria and other anomalous observations in the Venusian atmosphere motivate the search for life within the planet’s temperate clouds. To find signs of a Venusian aerial biosphere, a dedicated astrobiological space mission is required. Venus Life Finder (VLF) missions encompass unique mission concepts with specialized instruments to search for habitability indicators, biosignatures and even life itself. A key in the search for life is direct capture, concentration and visualization of particles of biological potential. Here, we present a short overview of Fluid-Screen (FS) technology, a recent advancement in the dielectrophoretic (DEP) microbial particle capture, concentration and separation. Fluid-Screen is capable of capturing and separating biochemically diverse particles, including multicellular molds, eukaryotic cells, different species of bacteria and even viruses, based on particle dielectric properties. In this short communication, we discuss the possible implementation of Fluid-Screen in the context of the Venus Life Finder (VLF) missions, emphasizing the unique science output of the Fluid-Screen instrument. FS can be coupled with other highly sophisticated instruments such as an autofluorescence microscope or a laser desorption mass spectrometer (LDMS). We discuss possible configurations of Fluid-Screen that upon modification and testing, could be adapted for Venus. We discuss the unique science output of the Fluid-Screen technology that can capture biological particles in their native state and hold them in the focal plane of the microscope for the direct imaging of the captured material. We discuss the challenges for the proposed method posed by the concentrated sulfuric acid environment of Venus’ clouds. While Venus’ clouds are a particularly challenging environment, other bodies of the solar system, e.g., with liquid water present, might be especially suitable for Fluid-Screen application.
CITATION STYLE
Weber, R. E., Petkowski, J. J., & Weber, M. U. (2022). Direct In-Situ Capture, Separation and Visualization of Biological Particles with Fluid-Screen in the Context of Venus Life Finder Mission Concept Study. Aerospace, 9(11). https://doi.org/10.3390/aerospace9110692
Mendeley helps you to discover research relevant for your work.