In recent years, wireless sensor networks have been used for various applications such as environmental monitoring, military and medical applications. A wireless sensor network uses a large number of sensor nodes that continuously collect and send data from a specific region to a base station. Data from sensors are collected from the study area in the common scenario of sensor networks. Afterward, sensed data is sent to the base station. However, neighboring sensors often lead to redundancy of data. Transmission of redundant data to the base station consumes energy and produces traffic, because process is run in a large network. Data aggregation was proposed in order to reduce redundancy in data transformation and traffic. The most popular communication protocol in this field is cluster based data aggregation. Clustering causes energy balance, but sometimes energy consumption is not efficient due to the long distance between cluster heads and base station. In another communication protocol, which is based on a tree construction, because of the short distance between the sensors, energy consumption is low. In this data aggregation approach, since each sensor node is considered as one of the vertices of a tree, the depth of tree is usually high. In this paper, an efficient hierarchical hybrid approach for data aggregation is presented. It reduces energy consumption based on clustering and minimum spanning tree. The benefit of combining clustering and tree structure is reducing the disadvantages of previous structures. The proposed method firstly employs clustering algorithm and then a minimum spanning tree is constructed based on cluster heads. Our proposed method was compared to LEACH which is a well-known data aggregation method in terms of energy consumption and the amount of energy remaining in each sensor network lifetime. Simulation results indicate that our proposed method is more efficient than LEACH algorithm considering energy consumption.
CITATION STYLE
Sajedi, H., & Saadati, Z. (2014). A Hybrid Structure for Data Aggregation in Wireless Sensor Network. Journal of Computational Engineering, 2014, 1–7. https://doi.org/10.1155/2014/395868
Mendeley helps you to discover research relevant for your work.