Various methods, including random regression, structured antedependence models, and character process models, have been proposed for the genetic analysis of longitudinal data and other function-valued traits. For univariate problems, the character process models have been shown to perform well in comparison to alternative methods. The aim of this article is to present an extension of these models to the simultaneous analysis of two or more correlated function-valued traits. Analytical forms for stationary and nonstationary cross-covariance functions are studied. Comparisons with the other approaches are presented in a simulation study and in an example of a bivariate analysis of genetic covariance in age-specific fecundity and mortality in Drosophila. As in the univariate case, bivariate character process models with an exponential correlation were found to be quite close to first-order structured antedependence models. The simulation study showed that the choice of the most appropriate methodology is highly dependent on the covariance structure of the data. The bivariate character process approach proved to be able to deal with quite complex nonstationary and nonsymmetric cross-correlation structures and was found to be the most appropriate for the real data example of the fruit fly Drosophila melanogaster.
CITATION STYLE
Jaffrézic, F., Thompson, R., & Pletcher, S. D. (2004). Multivariate character process models for the analysis of two or more correlated function-valued traits. Genetics, 168(1), 477–487. https://doi.org/10.1534/genetics.103.019554
Mendeley helps you to discover research relevant for your work.