Spectral imagers divide scenes into quantitative and narrowband spectral channels. They have become important metrological tools in many areas of science, especially remote sensing. Here, we propose and experimentally demonstrate a snapshot spectral imager using a parallel optical processing paradigm based on arrays of metasystems. Our multi-aperture spectral imager weighs less than 20 mg and simultaneously acquires 20 image channels across the 795- to 980-nm spectral region. Each channel is formed by a metasurface-tuned filter and a metalens doublet. The doublets incorporate absorptive field stops, reducing cross-talk between image channels. We demonstrate our instrument's capabilities with both still images and video. Narrowband filtering, necessary for the device's operation, also mitigates chromatic aberration, a common problem in metasurface imagers. Similar instruments operating at visible wavelengths hold promise as compact, aberration-free color cameras. Parallel optical processing using metasystem arrays enables novel, compact instruments for scientific studies and consumer electronics.
CITATION STYLE
McClung, A., Samudrala, S., Torfeh, M., Mansouree, M., & Arbabi, A. (2020). Snapshot spectral imaging with parallel metasystems. Science Advances, 6(38). https://doi.org/10.1126/sciadv.abc7646
Mendeley helps you to discover research relevant for your work.